
Grid data storage on widely distributed worker nodes
using Scalla and SRM

 Pavel Jakl for the STAR collaboration

Introduction

Distributed data management at STAR

Summary

 Scalla/Xrootd as a next generation tool for
distributed data access

Real production scenario: optimizing access to
the tape system

Grid access for the Scalla system using SRM

STAR detector
● Produce 1 PB of data per year

and grows each year
● Already 15 PBs stored on

tapes from previous years
● Over 15 Millions of files and

grows

While the Scalla seems to perform extremely well and satisfy STAR’s most immediate needs, such as a storage solution serving high-
performance, scalable, fault-tolerant access to their physics data, it could itself be improved and extended. For example, Scalla does not
move files from one data-server to other data-server or even from one cache to other cache within one node, but always restore files from
MSS. This may be slow and inefficient in comparison with transferring the file from other node or cache, not involving any tape mount or
other delays intrinsic to MSS. Additionally, the system is not able import files from other space management systems (dCache, Castor) or
even across the grid. There are no advanced reservations of space, other users can collate the space in the meantime while the restore from
MSS operation is still ongoing. There are no extended policies per users or role based giving advanced granting of permissions to a user.
There is no concept of pinning the files, requested files can be evicted to release a space. This makes un-practical additional features such a
pre-staging (essential for efficient co-scheduling of storage and computing cycles).

In addition, there are other middle-ware designed for the space management and only for the space management. Specifically, the grid
middle-ware component called Storage Resource Managers (SRMs) has for function to provide dynamic space allocation and file
management on shared distributed storage systems. SRMs are designed to manage space, meaning designed to negotiate and handle the
assignment of space for users and also manage lifetime of spaces. In addition of file management, they are responsible for managing files on
behalf of user and provide advanced features such as pinning files in storage till they are released or also even manage lifetime of files that
could be removed after specific time. SRMs also manage file sharing with configurable policies regulating what should reside on storage or
what to evict. One of the powerful features of SRMs is ability of bringing the files from other SRMs, local or at remote locations including
from other site and across the Grid .

Facing the reality of storage economics, High Energy and Nuclear Physics (HENP) experiments such as RHIC/STAR have been engaged in a shift of the analysis
model, and now heavily rely on using cheap disks attached to processing nodes, as such a model is extremely beneficial over expensive centralized storage.
Additionally, exploiting storage aggregates with enhanced distributed computing capabilities such as dynamic space allocation (lifetime of spaces), file management
on shared storages (lifetime of files, pinning file), storage policies or a uniform access to heterogeneous storage solutions is not an easy task.

The Xrootd/Scalla system allows for storage aggregation. We present an overview of the largest deployment of Scalla (Structured Cluster Architecture for Low
Latency Access) in the world spanning over 1000 CPUs co-sharing the 350 TB Storage Elements and the experience on how to make such a model work in the
RHIC/STAR standard analysis framework. We explain the key features and approach on how to make access to mass storage (HPSS) possible in such a large
deployment context. Furthermore, we give an overview of a fully "gridified" solution using the plug-and-play features of Scalla architecture, replacing standard
storage access with grid middle-ware SRM (Storage resource manager) components designed for the space management.

References
[1] P. Jakl, J. Lauret, A. Hanushevsky, A.

 Shoshani, A. Sim: From rootd to xrootd
 Prooceedings of CHEP'06, India, 2006

[2] P.Jakl et. al. : Managing widely
distributed data-sets
Research report, FNSPE CTU, Czech
Republic, 2006

[3] P. Jakl et.al : Data access on widely
distributed worker nodes
ROOT workshop, CERN, 2007

[4] ROOT framework, http://root.cern.ch

[5] STAR, http://www.star.bnl.gov

● Scalla/Xrootd is deployed on almost 500 nodes serving over 350 TBs of
disk space [1]

● Load balancing and handshake with tape system make the system resilient to
failures and it is used for daily analysis

● we developed monitoring toolkit to measure HPSS errors and ratio of HPSS
requests over all requests as well as performance of HPSS with respect to 2
key performance parameters described in [2]

● we gathered and developed several performance measurements where the
results are counted to applied load balancing optimizations well described in
 [2]

● Integration of Scalla/Xrootd with SRM is still ongoing where ISSGC'07
attendance is giving me wonderful opportunity to learn about several grid
middle-ware components necessary for this exercise

 Pavel Jakl, NPI ASCR, Prague ISSGC'07, Sweden

Distributed vs. Centralized model at STAR

Projection of data for the upcoming years

Time Projection
 Chamber

Coils Silicon Vertex
 Tracker

E-M
Calorimeter

Time
Of
Flight

Forward Time Projection Chamber

Electronics
Platforms

Magnet

Several High Energy and Nuclear Physics experiments such
as Solenodial Tracker at Relativistic Heavy Ion Collider
(STAR RHIC) at Brookhaven National Laboratory produce
PetaByte of data (raw and reconstructed) per year which
bears deep puzzle to manage data over the normal data size
storage in today’s personal environment.

This challenge could in principle be resolved by using
solutions involving standard centralized storage managed by
NFS or instead using cheap disks attached to processing
nodes called distributed storage. Although distributed
storage introduce many components within a complex
server/server and server/clients layout, from economical
statistics, the initial purchase price is cheaper by factor of 10
comparing to the centralized storage.
When considering distributed disk, the scalability and
capacity linearly grows simultaneously with computing
nodes, since the storage is attached. There is also no other
need for extra hardware in order to increase the size of the
storage. The maintenance resources are reduced in case of
distributed disk, since there is no need of having two
separated persons for maintaining computing and storage
element, one person can serve both of them.
On the other hand it brings worse manageability, sometimes
called: ”Islands of information”. The difficulty relies on
management of space spread among multiple servers, not
mentioning load balancing issue, obtaining highest
performance and scalability (since CPU and storage are now
coexisting).
Driven by the need for vast amount of data and economics,
the STAR decided to move toward to a distributed storage
model infrastructure as their primary storage solution.

ROOTD distributed model

To overcome some of the mentioned limitations, STAR has
used ROOTD [4] based model which provides a remote file
access mechanism via TCP/IP-based data server daemon
within the ROOT framework.

Any experiment facing Peta bytes scale problems are in need
for a highly scalable hierarchical storage system to keep a
permanent copy of the data. STAR uses a High Performance
Storage System called HPSS. Having a large archive is not
sufficient of course as million of files would make the
recovery of one file a needle in a hay stack nightmare. The
second vital component is to arm the experiment with a robust
and scalable catalog (FileCatalog), keeping the millions of
files and potentially, an order of magnitude higher number of
file replicas at reach (i.e where the data are located). The
environment is composed of a large set of nodes with each
node having from one to 3 local drives

Since the data always has a primary copy deposited by the data reconstruction process into HPSS. Additional tools are needed to
retrieve and populate the distributed disks in a pre-staged and static manner. To deal with this effort, the DataCarousel system was
developed. All user data-intensive batch jobs read a file remotely via ROOTD, their jobs themselves are submitted according to the
selection of data-sets. The STAR Unified Meta-Scheduler (SUMS) would resolve user’s meta-data-sets into logical files and identify
particular physical locations of a file using the FileCatalog API. This abstraction layer makes the model viable as all files in this model
would otherwise be strongly associated to server and storage that is, requires exact physical location knowledge which a user would
hardly be able to keep track of the data-sets and their dynamic..

But while it seems that ROOTD model [1] can achieve sophistication
and faultless features at a first glance, the system still has its major
flaws and deficiencies. The biggest is the lack of dynamic features as
files are added and removed. ROOTD being by essence Physical File
Name (PFN) oriented, it first needs constant cataloging and therefore
the system lacks the flexibility of moving the data around without
special handling.

Even though the files would be distributed at multiple places, physical
file access requires exact reference at submission: by the time the job
really starts, the entire load picture of the cluster may very well be
different from what was used for the file access decision making
process. Files placed on overloaded and not responding nodes could
suddenly be requested and the scheduled job would die. This is
inherent to the latency between a job dispatching and the time the work
unit to really starts, this cannot be circumvented within a PFN model.
In fact, another of those problems comes when a node suddenly re-
appears but the disk holding the data was wiped-clean (maintenance
downtime due to disk failure and replacement). In such cases, the
registering of files does not only have little time to update its
information but may not even exists since the system disk was wiped
out. More obvious, the data population is relatively static: users could
access only the data-sets already pre-populated in the system but never
have a chance to access data-sets available on the mass storage. A
dynamic system must therefore have the capability to hand shake with
mass storage systems.

Also, such system should be self-adaptive, relying on its own
coordination mechanism to balance load and access rather than relying
on an external component providing mapping from meta-data or logical
to physical name space.

The main and basic features such a system must accomplish are:

● Scalability: the performance of the system must scale with the
number of clients and servers

● Fault tolerance: a high degree of fault tolerance at the user
side is mandatory to minimize the number of jobs/applications
failure after a transient or partial server side problem or any
kind of network glitch or damaged files

● Security: allowing to run any security protocol
● Load balancing: a load balancing mechanism is needed, in

order to efficiently distribute the load between clusters of
servers and preventing hot spots in cluster

●

● Reliability: eliminate the single point of failure
● Replica management: determination of the location and

multiplicity of data
● Single global unique name-space: One mechanism that allows

the name of a file to look the same on all computers is called a
uniform name space

● MSS integration: accessing files from permanent storage
(such as HPSS)

● Grid integration: the ability to connect to other instances
located in different parts of the world

All requirements listed at the beginning of this section
and additional requirement of external cataloging
complies to the Scalla/Xrootd system. Its architecture
allows the construction of single server data access sites
up to load balanced environments and structured peer-to-
peer deployments, in which many servers cooperate to
give an exported uniform name-space.

Overview of the Scalla/Xrootd system

ROOTD Scalla
Scalability Yes Yes

Fault tolerance No Yes

Security Yes Yes

Load balancing No Yes

Reliability No Yes

Replica management No Yes

Unique namespace Yes Yes

MSS integration No Yes

Grid integration No Not yet

From our observation and usage at STAR, the average time to
restore one file from the tape system was about ~ 21 minutes.
By simple counting, when a user requests 1000 files, we get the
time period of 350 hours being beyond any acceptable limit.

The first picture shows two most important key parameters of
tape drive performance:

● the size of the file
● the number of files restored per one tape mount

Files which are being used for analysis are MicroDST files with
average size of ~88 MB. One can easily distinguish from the
plot that by increasing the file size up to 1 GB, the performance
efficiency gain is 40%. While increasing file size of already
reconstructed and produced data is not an easy procedure and
cannot be improved by any magic procedure within the
Scalla/Xrootd system, the more interesting parameter is the
second one.

The second parameter is directly affected by the access pattern
of the application which requests files from/to tape system.
However, the access pattern is far behind the application itself,
users who performs the analysis are the ”generators” of the
access pattern. Moreover, the access pattern is defined partially
by user’s intend of requested files, but also by Scalla/Xrootd
system, since the system can have some of the files already on
the disk and therefore doesn’t need to access them from the
tape. By observing the plot above, we can see that an increase
of multiple files per one tape mount, we can boost the
performance by 35%. However, this scenario is not feasible in
real world production of huge amount of data and files spread
over many tapes. The most likely number is 10 files per tape
mount which corresponds to 10% gain of performance
efficiency upon 88MB files. However, the growth sharply
accelerates when the size increases and the performance boost
is more than 60%.

The two pictures shows the hassle of two jobs for one HPSS
drive where the excessive mounting of the same tape is a
consequence of the sequential processing, while the second one
shows ideal state.
First Job A requests its first file from the list, the ”Tape 1” is
mounted for the ”File 1” and file is read from tape to disk
cache and transferred from cache to a node where job can
process the file. Obviously, in the meantime where HPSS
transfers the ”File 1”, the ”Tape 1” is dismounted to satisfy the
request of the second Job B where the ”Tape 2” is mounted for
the ”File A”. This situation is repeated for second files from
lists and both jobs.

From the pattern, it is transparent that the same tape is mounted
and dismounted constantly during a fixed period of time.
Evidently, there is a solution of publishing the whole list of
files to the system before starting to process them. This ensures
the increment of files for efficient tape sorting and prevent the
sequential processing defect on the tape system.. For this
purpose, we have implemented new feature to Scalla system
called Pre-Staging.

50% of improvement

SRM comes in three flavors of storage resource managers:
● Disk Resource Manager (DRM)

● manages one or more disk resources
● Tape Resource Manager (TRM)

● manages the tertiary storage system (e.g. HPSS)
● Hierarchical Resource Manager (HRM=TRM+DRM)

● stages files from tertiary storage into its disk
cache and manage both resources

Scalla – SRM interaction:
● Scalla is responsible for managing the disk cluster

(aggregation, load balancing etc.)
● DRM is responsible for managing the disk cache
● HRM is responsible for managing access to HPSS

Component architecture overview
(Filesystem implementation is replaced by SRM calls)

ROOTD model overview

Comparison of old and new solution

HPSS Performance measurements (# files per tape mount vs performance of HPSS)

The hassle of two jobs for one HPSS drive

http://root.cern.ch/

